
Python
Python language
Installing Python (Windows)
Installing Python (MacOS)
Setting up environments
How to enable GPU support with TensorFlow (Windows) (For High Holborn only)
How to enable GPU support with TensorFlow (macOS)
Enable GPU support with Pytorch (macOS)
How to install CUDA Toolkit on your personal Windows PC
Simple PyTorch Project
Audio Files with Librosa
How to configure Weights & Biases for you ML project
Dataset Augmentaion

Python language
If you are brand new to the Python programming language, you first need to have it properly
installed on your computer. To run a Python program, you will need a Python interpreter. If you try
to install Python from the official page python.org, you are essentially just downloading an
executable program that operates a Python interpreter and holds a large suite of useful tools and
functions that you can utilize in your code. This is known as the Python standard library.

Python_dowloadImage not found or type unknown

For the example image, the page usually picks up on the operating system of the computer you are
using. If you are looking for a different format or a specific release version, you can manually
search for it in the Active Python releases.

What are Python releases?
Python is community-based and open-sourced, meaning it is free to use, and anyone can
participate in improving, maintaining and releasing their own libraries. This adds great functionality
to the language but also requires the periodic release of newer versions, which helps to add these
newer features and fixes previous bugs. All Python versions are formatted as A.B.C ; the first
number is a major release, the second one a minor release, and the third represents patches to fix
bugs. For example, as of writing this, the current release of Python is 3.12.1.

So, which Python version do I need?
It is best to check the Python version that has fewer issues with the libraries and packages that you
know you are going to need. For this, we will work with environments, which are little containers
that will help you keep your libraries and Python versions running as smoothly as possible. But first,
let's help you install Python on your computer.

NOTE:
Please complete the whole reading before installing anything, as some parts highlight older
practices and do not reflect the current way to install Python.

Installing Python (Windows)
For Windows:
If your laptop is new, and you have never used it to compile a Python file, it is most likely that it
does not have it installed already, but it is always good practice to check first.

1. Open your Windows terminal. For Windows, you can access different types of terminals
(Windows PowerShell, Windows Terminal, Command Prompt). They have different uses,
but for this, we will look for the command prompt. It should look something like this:

comand_promptImage not found or type unknown

When you open it, on the screen, you can write python --version or python -V . If you have Python
installed in your computer, is going to show you a message of the version and some features for
your computer.

CP_pythonVersionImage not found or type unknown

If you do not have Python installed, the prompt will take you automatically to the Microsoft Store. If
not, you can follow the next steps.

Microsoft Store install (Easiest):
If you are new to Python and looking to get started quickly, you can install it directly on the
Microsoft Store page. If you followed the last steps to check if you have Python and you do not
have it on your computer, most likely, the Microsoft Store app launched on its own. If not, you can
search for it in the search bar. It should look something like this:

MS_pythonImage not found or type unknown

Once you have found the version you need to install, click get, and wait for the application to finish
downloading. The Get button will then be replaced by Install on my devices , where you can decide if

KEEP IN MIND:
If the version you have on your computer is not the newest one, do not worry about it. We
will discuss how we can manage that with Python environments.

IMPORTANT
Please ensure the application you select is created by Python Software Foundation. The
official software is free, so if the application costs money, then it is the wrong one. Select the
newest version.

you want to install only on the current user or all the computers. After you select them, click install.

If the installation was successful, you will see the message This product is installed . You can now
access Python, including pip and IDLE . This allows you to run Python scripts in your terminal
directly.

Downloading the installer (intermediate):
The installation via the official page for Python is suited for more experienced developers, as it
offers a lot more customization and control over the installation.

Once you download the .exe file of the latest Python version (right now, it is not important to look
for different versions), follow the installation guide. Remember to select either the Windows x86-64
executable installer for 64-bit or the Windows x86 executable installer for 32-bit, depending on
your own computer specifications. You can see which one you have by following the next steps:

1. Click the start button at the bottom left corner.
2. Select or search for Settings

Windows_screenImage not found or type unknown

3. In Settings , select the System tab.

systems_pageImage not found or type unknown

4. Scroll all the way down on the left panel and click "About". The information you need is
under "Device specifications" in the System type.

System_aboutImage not found or type unknown

IMPORTANT
Please keep in mind that this is only for first-time installations. If you have Python already
and want to upgrade it to a newer version, it is a completely different process that we will
discuss in later posts.

IMPORTANT
Please note that this installation requires you to have previous knowledge of how `PATH`
works. If you do not know what PATH is, we strongly recommend you use the Microsoft Store
Package instead of this installer.

IMPORTANT

Now that we have the correct installer for your computer run the file. A dialogue window will
appear, and there are some different things we can do with it.

Python_setupImage not found or type unknown

The default path for installation is in the directory of the current Windows user. The Install
launcher for all users (recommended) checkbox is checked default. This means every user
on the machine will have access to the py.exe launcher. You can uncheck this box to
restrict Python to the current Windows user.
There is another checkbox that is unchecked by default called Add Python to PATH. There
are several reasons why you might not want Python on PATH, so make sure you
understand what this does before clicking on it.

If you choose the customised installation, you have other different features that can be installed.

This allows developers to have more control over other optional features for the manual
installation:

Please note that drivers made for the 32-bit version of Windows will not work correctly on a
computer running on a 64-bit version and vice versa.

IMPORTANT
If you do not know what PATH is, we strongly recommend you use the Microsoft Store
Package instead of this installer. The Microsoft package is directed to people new to Python
and focused primarily on learning the language rather than building professional software.

KEEP IN MIND
This option requires you to provide administrative credentials. If this is not your personal
computer, you may not have the correct access.

We will explain the different optional features and a general idea of what they represent, but
if you do not understand or are unfamiliar with any of them, please go back to the automatic
installation.

For each option, we have:

Documentation: Will download the documentation of the Python version you are
installing. All this information is also available on the Python documentation page, so it is
unnecessary.
Pip: Pip is a tool that helps to fetch packages for Python. When you install Python, you
only have the standard library available, so you need a package manager to install
specific libraries. Pip is the official supported one. We will discuss different package
managers in later posts.
IDLE: This stands for Integrated Development Learning Environment. This function will
install the "tkinter" toolkit, a Python default GUI (Graphical User Interface) package.
Python test suite: This installs all the standard libraries for Python application testing.
The test package is meant for internal use by Python only. It is documented for the benefit
of the core developers of Python. Any use of this package outside of Python’s standard
library is discouraged.
Py launcher: Enables you to launch Python CLI (Command Line Interface) like command
prompt or Windows shell.
For all users: Same as the normal installer, it allows you to install the Python launcher
for all system users.

After clicking next, we will have the last customizable screen, where developers can check all the
additional features. Some may have already been checked depending on the choices made before.

https://wiki.cci.arts.ac.uk/uploads/images/gallery/2024-01/GiFihOiRGu9J2sG5-image-1705932095623.png

Install for all users: This installs the Python launcher for all the users in your system.
Associate files with Python: This option will link all the files Python extensions like .py ,
.pyd , .pyc or .pyo with the Python launcher or editor.
Create a shortcut for installed applications: It will automatically create a shortcut for
applications on the Desktop.
Add Python to environment variables: PATH is an environment variable that holds
values related to the current user and operating system. It specifies the directories in
which executable programs are located. So when you type Python, Windows gets its
executable from PATH. Hence, you won't need to type the whole path to the file on the
command line.

The last three options tell the Python installation wizard to install all the debug symbols and
binaries along with the bytecode of all the standard libraries, which we will be using with our
programs. Finally, we can change the location of the Python installation directory. The location you
specify will be added to the environmental variable of our Windows operating system.

Installing it lets you go to your terminal and execute a Python script. Assuming that you know how
to deploy and work with the terminal (command tool) in your computer, once you have an
interpreter installed, you can run a Python code by going to the folder where the py file is stored
(from the terminal), and run:

Being 'my_script' the name of our dummy code. This will instruct the Python interpreter stored on
your computer to read that file. Assuming that the code obeys the grammatical rules of Python and

python my_script.py

https://wiki.cci.arts.ac.uk/uploads/images/gallery/2024-01/S6bkJFwnCE4auHxb-image-1705937280551.png

the instructions in the code have to provide an output, this will appear in the terminal window.
Again, this is an example of a very simple code. Some codes also require input from the user, and
for that, we will need further tools.

Installing Python (MacOS)

For Mac users, there are different ways to install Python: by going to the official Python page and
installing it directly from the page or using the Anaconda package (which we will show in another
post).

Downloading the installer:
Most recent versions of Mac computers no longer have a pre-installed version of Python, and if your
computer is brand new, most likely, it does not have it installed. Either way, it is always good
practice to check if we have a previous version of Python installed so the packages do not clash.

To see if you have installed any Python version, launch the terminal of your computer by:

1. Searching for it in the Applications folder.
2. Command + Space bar and typing "Terminal"

and type python --version in it and hit Enter . If it’s not installed, you will see command not found:
python . If installed, it will show you which version you have installed. Alternatively, you can type
Python , and the terminal will automatically enter a Python running script, showing the Python
version you have and the date of its release.

Python_macImage not found or type unknown

If Python is not installed, you can then use the installer. When you open the official page with your
Mac, it automatically gives you the option for the latest version of the MacOS operating system.

Python_installerMacImage not found or type unknown

Run the installer and follow the instructions. When you reach the installation type section, ensure
enough space in your disk to install this package.

NOTE:
Mac OS no longer has a pre-installed version of Python in their systems (Starting from
macOS Catalina).

IMPORTANT:
The Homebrew package manager is another popular method for installing Python on macOS.
However, the Python distribution offered by Homebrew isn’t controlled by the Python
Software Foundation. The most reliable method on macOS is to use the official installer,
especially if you plan on programming Python GUI with Tkinter (Homebrew doesn’t include
the Tcl/Tk dependency required by the Tkinter module).

Installation_typeImage not found or type unknown

If you have partitions in your disk and want to change the installation location, you can select this
by clicking the Change Install Location and choosing the disk you want. If not, click Install . The
installation might take 5 to 10 minutes, depending on your internet connectivity. When the installer
is finished copying files, double-click the Install Certificates command in the finder window to ensure
your SSL root certificates are updated.

Restart your terminal (you can close it and open it in a new window) and repeat the process of
checking the Python version. It should show you the version you have just installed.

Setting up environments
Global and Virtual environments
Now that we have installed Python, we mentioned that it comes with certain pre-installed basic
libraries. But what happens when you want to use Python for a specific task and need to install
additional packages? For this, Python has enabled pip , a recursive acronym for "Pip Installs
Packages" or "Pip Installs Python", as its package manager to automate installation, update, and
package removal.

However, installing new packages directly into the download of Python can have difficult
consequences. This Python we just installed is the Global environment. We mentioned that
Python is an open-source interpreted programming language that goes through constant updates.
For this reason, newer libraries developed on different Python versions often conflict with libraries
without the same updates, and error messages start to pop up.

badPythonEnvImage not found or type unknown Dmitriy Zub, Dec 22, 2021. Python Virtual Environments tutorial using
Virtualenv and Poetry. Place of publication: SerpApi. Available here.

This image is a beautiful, chaotic example of what happens to your global environment when we do
not have order in the different paths and versions of new packages.

To avoid this, a good practice when using Python is to use virtual environments. This
environment allows for isolating package dependencies so they do not clash. For example, you
may have two projects, one for computer vision and another for Natural Language Processing
(NLP). Both of them use similar libraries but in different versions of Python. We can not install both
versions system-wide, but we can create isolated environments for each project.

There are different ways to build Python environments:

NOTE:
These environments are called containers because they do not interact with each other.
However, this is only for the system. The folders and files in your storage are all available for
all the environments. This means that if you remove, add, or change a folder when you are
working inside an environment, that change is permanent and will apply to all environments

IMPORTANT:
Please note that all of the steps mentioned on this page are recommended from original
sources; try to follow them as faithfully as possible. If, in any step, something does not work
as it should, contact a technician first before following any other instructions that need you

https://serpapi.com/blog/python-virtual-environments-using-virtualenv-and-poetry/#why_venv

Python environments (venv):
For this type of environment, the only requirement for your computer is to have a version of Python
installed on it. venv is a Python module that supports lightweight virtual environments.

For this type of environment, you need to be familiar with how the terminal works, how you can
move from one folder to another, and the Python versions you have installed. If you are unfamiliar
with these requirements, please refer to the How to use Anaconda section.

From Python 3.3 onwards, venv should be included in the commands available. To create a virtual
environment with this, please open your terminal:

macOS

To enter the terminal, you can search it directly from the Launchpad or application folder. Type
Command + Space bar and type terminal for a shortcut. First, we must ensure you are in the folder
where you want to save the environment. When you open the terminal, you should see only your
user name:

Python_terminalImage not found or type unknown

For this example, I am going to access my Documents folder. You can access whatever folder you
wish to save your environment on.

Inside of the brackets, you can change it to whatever name you want. Just make sure that the
name of the environment is something easy to remember, or write it down somewhere. The name
should also follow the terminal rules: if you are going to name something with more than one word,
you need to hyphenate the words with an underscore (_).

to move things directly from your terminal.

NOTE:
If you have not yet installed Python on your computer, please refer to the Installing Python
section of the wiki.

WHY IS THIS IMPORTANT?
If you save a virtual environment with the same name in the same folder, the terminal will
interpret it as you want to rewrite it, and you will lose the information from the previous one.
Before creating new environments, make sure that the name and folder you choose differ
from previous ones.

python -m venv [name of the environment]

Example: python -m venv example_environment .

The way you activate it is while inside the folder where you created the environment, call source
[name of the environment]/bin/activate . The name in front of the dollar sign should change to the name
of the environment you are currently in.

Example:

Captura de Pantalla 2024-02-13 a la(s) 9 29 28 a mImage not found or type unknown

WINDOWS OS

For the Windows OS you also need to have previously installed Python.

If you have Python already in your Path variables, you can just use the same arguments as the
macOS instructions.

Example: python -m venv example_environment

Please note that the same rules apply to Windows, so make sure to name the environment
something unique and easy to remember, and also select the correct folder for your environment.

Conda environments
Another way to create environments in Python is to use the Anaconda distribution. For this, we
have two options: we can download Anaconda from the official distribution or a more light version
of Anaconda called Miniconda.

IMPORTANT:
If you installed Python by downloading the installer directly from the Python page, you might
need to add the path to the environment variables of your computer. Please see the section
on how to do that in the "Add path to environment" section. If you are not familiar with the
path and what it means to add it to the environment variables, please continue with the next
steps.

WHICH VERSION DO I NEED?
These two versions are from the same distribution and are widely used for data science and
scientific computing. The main difference between the two is the size of the installation.
Anaconda requires at least 3 GB of free disk space, while Miniconda only requires 400 MB
(Something you need to take into consideration if you do not have enough space available
on your computer). Anaconda comes with a large array of pre-installed packages and a very
user-friendly graphical interface that can favor those who are not very familiar with the use
of the terminal or command line prompts. Miniconda only includes the `conda` function and
Python in its installation.

If you go for the Anaconda version:

macOS

If you go to the official Anaconda page (https://www.anaconda.com/download#downloads), you will
see the Download button for your OS. If you are using macOS, it is also important to know if your
hardware settings are an Intel chip or an M1/M2/M3 chip.

Screenshot 2024-02-12 at 11 00 56Image not found or type unknown

You can check this by going to the Apple at the top left corner of your screen and clicking on About
this Mac.

Screenshot 2024-02-12 at 11 04 31Image not found or type unknown

This should prompt a Window that will say the chip your computer has:

Go back to the Downloads page on Anaconda and choose the right setting for your computer.

Once the package is done loading, you can choose the predetermined installation and click install.
If your terminal was opened, please relaunch it, you will now be able to see the pre fix in your user
name as (base) . Which means that you are in the base or root environment. We explain this later
on.

NOTE:
You can also click on `More info` to see all the different settings on your computer.

https://wiki.cci.arts.ac.uk/uploads/images/gallery/2024-08/KCQBOjVhCB2JgSct-image-1724759968934-37-53-pm.png

It goes from:

Screenshot 2024-02-12 at 11 16 26Image not found or type unknown

To look something like this:

Captura de Pantalla 2024-02-13 a la(s) 10 02 38 a mImage not found or type unknown

For Windows users:
For Windows, there is only one universal installer, so it does not matter the version of Windows that
you are using. It is only important to know that it is only available for the 64-bit version. If your
computer is a 32-bit, please look into the Anaconda archive
(https://docs.anaconda.com/free/anaconda/install/old-os/).

imageImage not found or type unknown

Follow the installation process. Same as with the Python installation, this installer is going to ask
you if you want to add this software to your path variables. If you are not sure or do not understand
fully what path does, do not activate this function. We can change it later on if you need it.

imageImage not found or type unknown imageImage not found or type unknown

Installing Miniconda

Graphical installer:
macOS

You must download the Miniconda installer from the official page
(https://docs.anaconda.com/free/miniconda/). From here, you can choose the Intel or the M1/2/3
chip version and the bash or pkg versions. We strongly recommend using the bash version since
the pkg may skip the "Destination select" process, failing the installation.

bash

NOTE:
If you do not want to add Conda to your path variables, you can use the command prompt
directly from the Anaconda Navigator. Otherwise, all the other Windows terminals will not
have the `conda` prompt.

NOTE:
Please be mindful that Miniconda has no user interface and only offers the `conda` prompt
and Python. It also requires general knowledge of how the terminal works.

Once you download the document, locate where it is stored (it is most likely in the
Downloads folder).
Go to a new terminal in your computer (Command + Space bar type terminal + Enter)
Go into the folder where you have the bash file stored (Ej. cd Downloads); you can verify it
is there by running ls .
This is an optional step, but we recommend verifying the download to ensure everything
will run correctly. In your terminal run shasum -a 256 filename replacing filename with the
downloaded file name. If it does not raise any error, follow the next step.
Run bash <conda-installer-name>-latest-MacOSX-x86_64.sh . Replace the <conda-installer-name>
with the downloaded file's name.
Once the process is finished, please close and reopen your terminal (Command + q to
close/reboot the program completely. You can see if this was successful by clicking
Command + tab . It should show you all the applications you have opened. Make sure that
the terminal does not show there).
To verify the installation, open a terminal window and run conda list . If you installed
everything correctly, a list of all the installed packages should appear.

Windows

For Windows, you can just download the .exe file and run it. In case you want to install it directly
from the command line, you can run the following code:

curl https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe -o miniconda.exe

The curl command allows the terminal to exchange data directly from another server, in this case,
it is making an HTTP request, just like a web browser. If the request fails, make sure that your
internet connection is stable. Once the download is complete, type:

start /wait "" miniconda.exe /S

This will start the installation process. Afterward, you can run del miniconda.exe to delete the
executable file.

After installing, close the terminal and open the "Anaconda Prompt (miniconda3)" to use
miniconda.

NOTE:
If your computer is not 64-bit, you can look into miniconda archive installs. Just keep in mind
that older versions are not compatible with newer versions of Python, and will limit the
amount of new libraries you can use.

How to enable GPU support with TensorFlow
(Windows) (For High Holborn only)
This article will guide you through how to enable GPU computing for Tensorflow on High Holborn
DELL PCs.
The current version of Cuda Toolkit installed on DELL PCs is v12.2, but because the cuDNN library
isn’t pre-installed, each student wanting to use tensorflow with GPU enabled should create a new
environment using Anaconda Prompt and follow these steps:

1. Create a new conda enviroment with a Python version ranging from 3.7 to 3.10
conda create -n ENV_NAME python=3.10

2. Install tensorflow 2.10
pip install tensorflow==2.10.0

3. Install cuDNN from conda forge
conda install -c conda-forge cudnn=8.1.0

4. Test tensorflow
python -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
If the last command returned:
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
Tensorflow is ready to go!

How to enable GPU support with TensorFlow
(macOS)
If you are using one of the laptops on loan of the CCI, or have a Macbook of your own with an
M1/M2/M3 chip, here is what you can do to make full use of this chip with Tensorflow.

Requirements:
macOS 12.0 or later
Python 3.8 or later
Mac with M1/M2/M3 chip

Steps:
1. Go to your terminal and create a new virtual environment with

conda create -n ENV_NAME python=PYTHON_VERSION -y

For this line of code, instead of ENV_NAME you can add any other name. Just make sure there is
no other environment with the same name by typing conda env list in your terminal. That should
show you a list with the names of all the other environments that computer has. For the Python
version, you can choose any version later than 3.8. For more info about Python versions, see the
Python language wiki page.

2. Go into your environment by typing

conda ENV_NAME activate

3. Check the version of Tensorflow you need before installing it.
For Tensorflow 2.13 or LATER: python -m pip install tensorflow
For Tensorflow 2.12 or EARLIER python -m pip install tensorflow-macos

4. Now we need to install the tensorflow-metal plug-in, running the line:

python -m pip install tensorflow-metal

For more info about the metal plig-in for mac, please read: Apple-Metal

NOTE:
If you are using one of the CCI laptops, it should already have Anaconda and Python
installed. If you are using your personal computer, please follow the steps to install
Anaconda and Python from previous posts on the wiki.

https://developer.apple.com/metal/

5. After the installation is complete, you can copy and run the next python lines.

The output should be the tensorflow and python version you installed, and if everything is correct,
the final message will be that the GPU is available

import tensorflow as tf

print(f"Tensor Flow Version: {tf.__version__}")
print()
print(f"Python {sys.version}")

gpu = len(tf.config.list_physical_devices('GPU'))>0
print("GPU is", "available" if gpu else "NOT AVAILABLE")

Enable GPU support with Pytorch (macOS)
This tutorial is to enable the use of the GPU in the Macbooks available on the lockers. All of these
computers have Python and Anaconda already installed, so if you are using your personal
computer, make sure that you have that installed before starting this tutorial. Please take a look at
the other wiki pages about installing both Python and Anaconda.

Requirements:
Macbook with M1/M2/M3 chip available
macOS 12.3 or later
Python 3.8 or later
Package manager such as Anaconda or pip.

Steps:
1. Open your terminal and create a new virtual environment with:

conda create -n ENV_NAME python=PYTHON_VERSION -y

Replace ENV_NAME with the name of your environment. The name can be anything, just make
sure that it is not being used already. You can check that by typing conda env list . Also, remember
that the name has to be a single compound word, and no spaces, for example, my_environment , or
pytorch_env are good. my environment and pytorch env are not.

For the Python version, check for the best version for all the other libraries you need for your
project.

2. Activate your environment from your terminal with:
conda activate ENV_NAME

3. Install PyTorch by running:
pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu

This will install Pytorch and all the important dependencies in that library, like torchvision and
torchaudio (to this, you can additionally add torchtext).

4. Test your install by running the next Python code. The output of it should be tensor([1.],
device='mps:0')

import torch
if torch.backends.mps.is_available():
 mps_device = torch.device("mps")
 x = torch.ones(1, device=mps_device)
 print (x)
else:

5. Additional information: Pytorch has a lot of documentation of its different modules,
but a very useful one is to know how to assign hardware as a backend (this means it helps
you set up and run operations on the GPU). For the mps device, we assign it like in the
next example:

 print ("MPS device not found.")

Check that MPS is available
if not torch.backends.mps.is_available():
 if not torch.backends.mps.is_built():
 print("MPS not available because the current PyTorch install was not "
 "built with MPS enabled.")
 else:
 print("MPS not available because the current MacOS version is not 12.3+ "
 "and/or you do not have an MPS-enabled device on this machine.")

else:
 mps_device = torch.device("mps")

 # Create a Tensor directly on the mps device
 x = torch.ones(5, device=mps_device)
 # Or
 x = torch.ones(5, device="mps")

 # Any operation happens on the GPU
 y = x * 2

 # Move your model to mps just like any other device
 model = YourFavoriteNet()
 model.to(mps_device)

 # Now every call runs on the GPU
 pred = model(x)

How to install CUDA Toolkit on your personal
Windows PC
What is CUDA Toolkit and why do you need it?
In simple words CUDA Toolkit allows you to develop software capable of utilising GPUs. CUDA
Toolkit allows you to use CUDA runtime library for your C/C++ projects. CUDA Toolkit allows you to
enable GPU acceleration for some useful Python libraries like Tensorflow, Numba, CuPy.

Checking if you already have CUDA Toolkit
installed.
Open CLI and run nvcc -V command. If you get a similar output you already have CUDA Toolkit
version installed. You might need to install additional software like cuDNN for Tensorflow.
Python_dowloadImage not found or type unknown

Checking your NVIDIA Driver version
Open CLI and run nvidia-smi command. If the command returns an error, you don't have an NVIDIA
Driver installed. The highlighted number is your exact NVIDIA Driver version.

Note: CUDA version number in the table represents the latest CUDA Toolkit version your current
NVIDIA Driver supports. It does not represent your currently installed CUDA Toolkit version, or even
if you have it installed. Python_dowloadImage not found or type unknown

Installing NVIDIA Driver
Even if you have an NVIDIA Driver installed, you might need to upgrade your current version, to
access the newest CUDA version.

1. Open following link in your browser:
https://www.nvidia.co.uk/Download/index.aspx?lang=en-uk

2. Fill out the dropdown list on the website.
3. In case you don’t know exact name of your GPU:

In the Windows search bar enter “Device Manager”.
Click the arrow next to Display adapters.
Find the GPU starting with NVIDIA, this is your GPU.

Download the driver.
Follow the installation instructions.
Reboot your computer.

Open CLI and run nvidia-smi command. If the driver version changed, you successfully updated
your NVIDIA Driver version.

Installing CUDA Toolkit
1. Open following link in your browser:

https://developer.nvidia.com/cuda-downloads
2. Follow the instructions
3. Select exe (network or local) and click the download button
4. Follow the installer instructions

Installer will try to install GeForce Experience software. To disable it, use the custom
install option.

Reboot your PC.
Open CLI and run nvcc -V command. If you get an output containing the version of the CUDA
Toolkit you selected, you successfully installed CUDA Toolkit on your computer.
Note: If you execute nvcc -V command from the Anaconda Prompt CLI from the environment with
pytorch library, it might display CUDA Toolkit version installed with pytorch instead of the one
installed in your system.

Installing cuDNN library
This is an additional library you need to install to enable GPU computation in tensorflow.

1. Open following link in your browser:
https://developer.nvidia.com/rdp/cudnn-archive

2. Select the desired cuDNN version.
3. Follow the instructions
4. Select exe(network) and click the download button
5. Follow the installer instructions

Installing a different version of CUDA Toolkit

In some cases you will need to install older versions of both CUDA Toolkit and cuDNN.
Example: Repository for StyleGAN 2 requires you to have tensorflow 1.15. This version of
tensorflow does not support newer versions of CUDA Toolkit.

1. Before proceeding, be sure that the configuration you want to install is supported. To do
this consult CUDA Toolkit and cuDNN compatibility matrices:

NOTE:
Please complete the whole reading before proceding, uninstalling Nvidia Driver can negativly
affect your PC. Please be sure to do additional reseach on how to correctly uninstall graphics
drivers.

https://docs.nvidia.com/deploy/cuda-compatibility/index.html#binary-compatibility__table-
toolkit-driver
https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-801-preview/cudnn-support-
matrix/index.html
https://docs.nvidia.com/deeplearning/cudnn/reference/support-matrix.html

2. Completely uninstall CUDA Toolkit. They can be found in
Windows Settings > Apps > Apps & features

3. If your current NVIDIA Driver version supports the desired CUDA Toolkit version, proceed
to step 5.

4. This step is very risky!
If your current NVIDIA Driver version does not support the desired CUDA version, you
would have to uninstall your current Nvidia Driver and install the appropriate version.
This can be done in:
Windows Settings > Apps > Apps & features

5. Install the desired CUDA Toolkit from here https://developer.nvidia.com/cuda-toolkit-
archive.

6. Install the desired cuDNN version.

Simple PyTorch Project
Overview
This guide will walk you through a very simple PyTorch training pipeline. Accompanying code for
this article can be found here:
https://git.arts.ac.uk/ipavlov/WikiMisc/blob/main/SimpleCNN.ipynb

Loading Libraries
Every Python project starts by loading all the relevant libraries. In our case, the code for that is:

Reading the Dataset
For this example, we will use the MNIST dataset, containing 70,000 images of handwritten digits
from 0 to 9. The specific version of MNIST used in this example can be found here:
https://www.kaggle.com/datasets/alexanderyyy/mnist-png
Download the dataset and unpack it in the same directory your Jupyter Notebook is located. The
unpacked dataset will consist of train and test folders containing images for model training and
evaluation. Both test and train folders will have 10 sub-folders for each digit.

Python_dowloadImage not found or type unknown

To train our model, we need to know the file names and labels of all images in the dataset. A
simple way to do this is demonstrated in the code below:

import torch
from glob import glob
import cv2
import albumentations
from albumentations.pytorch import ToTensorV2
from torch.utils.data import Dataset, DataLoader

def readMnist(folder):
 filenames = [] #List for image filenames
 labels = [] #List for image labels

 folderNameLen = len(folder)

 #Reads all the filenames in a given folder recursively

https://git.arts.ac.uk/ipavlov/WikiMisc/blob/main/SimpleCNN.ipynb
https://www.kaggle.com/datasets/alexanderyyy/mnist-png

Note: Different datasets will require different approaches.

Dataset Class
The Dataset class will provide necessary functionality to our training and evaluation pipeline, like
loading images and labels, image transformations, and others.

 for filename in glob(folder + '/**/*.png', recursive=True):
 filenames += [filename]
 #Get the label of the image from it’s filepath
 labels += [int(filename[folderNameLen:folderNameLen+1])]
 return filenames, labels

trainFiles, trainLabels = readMnist('./mnist_png/train/')
testFiles, testLabels = readMnist('./mnist_png/test/')

class MnistDataset(Dataset):
 def __init__(self, filepaths, labels, transform):
 self.labels = labels
 self.filepaths = filepaths
 self.transform = transform

 def __len__(self):
 return len(self.labels)

 def __getitem__(self, idx):
 image = cv2.imread(self.filepaths[idx], 0)
 h,w = image.shape

 image = self.transform(image=image)["image"]/255.
 label = self.labels[idx]

 return image, label

Usually transformations would include data augmentation tricks,
but for this example we will limit ourselves to just converting image data from
NumPy array to PyTorch tensor.
transform = albumentations.Compose(
 [
 ToTensorV2()

To allow for mini-batch use we need to introduce a DataLoader to our pipeline.

Model Class
Our model classifies the input images between 10 different classes. Below is the code for our
simple convolutional neural network. The comments in the code will provide additional explanation.

]
)

#Instantiate Dataset objects for train and test datasets.
trainDataset = MnistDataset(trainFiles, trainLabels, transform)
testDataset = MnistDataset(testFiles, testLabels, transform)

class CNN(torch.nn.Module):
 # Inside of __init__ we define the structure of our neural network.
 # Thinks of this as a collection of all potential layers and modules
 # that we will use during the feedforward process.
 def __init__(self):
 super().__init__() #Needed to initialize torch.nn.Module correctly

 # Our first convolutional block. torch.nn.Sequential is container
 # that will execute modules inside of it sequantialy.
 # This convolutional block consists of a simple convolutional layer,
 # ReLU activation functions, and Max Pooling operation.
 self.conv1 = torch.nn.Sequential
 (torch.nn.Conv2d(
 in_channels=1,
 out_channels=16,
 kernel_size=5,
 stride=1,
 padding=2,
),
 torch.nn.ReLU(),
 torch.nn.MaxPool2d(kernel_size=2),
)
 # Our second onvolutional block.
 self.conv2 = torch.nn.Sequential(
 torch.nn.Conv2d(16, 32, 5, 1, 2),
 torch.nn.ReLU(),

Training and Validation
Below is the code for our training and validation procedure.

 torch.nn.MaxPool2d(2),
)
 # Fully connected layer that outputs 10 classes
 self.out = torch.nn.Linear(32 * 7 * 7, 10)

 # forward is a function that is used for feedforward operation of our model.
 # Input arguments are input data for our model. In this case x would be a batch of images from the MNIST
dataset.
 # Inside of this function we apply modules we defined in __init__ to input images.
 def forward(self, x):
 x = self.conv1(x)
 x = self.conv2(x)
 #This line flattens tensors from 4 dimenstions to 2.
 x = torch.flatten(x, start_dim=1)
 output = self.out(x)
 return output

This line creates an object of our convolutional neural network class.
We use .cuda() to send our model to GPU.
model = CNN().cuda()

#Here we define cross entropy loss functions, which we will use for loss calculation.
loss_fn = torch.nn.CrossEntropyLoss()

#This is our optimizer algorithm. In this example we use Stochastic gradient descent
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)

num_epochs = 25

#We will execute our training inside of a loop. Each iteration is a new epoch.
for epoch in range(num_epochs):
 print('Epoch:', epoch)

 running_loss = 0
 model = model.train() #sets our model to training mode.
 for i, data in enumerate(train_dataloader): #we will iterate over our dataloader to get batched data.

 x, y = data
 #Don't forget to send your images and labels to the same device as your model. In our case it's a GPU.
 x = x.cuda()
 y = y.cuda()

 #Resets gradients
 optimizer.zero_grad()
 #output of our CNN model
 outputs = model(x)
 #Here we calcualte loss values
 loss = loss_fn(outputs, y)

 loss.backward() #Backpropagation
 optimizer.step() #Backpropagation

 running_loss += loss.item()

 print(running_loss/len(train_dataloader)) #average training loss for current epoch

 model = model.eval() #sets our model to evaluation mode.
 test_acc = 0
 test_running_loss = 0
 for i, data in enumerate(test_dataloader):
 x, y = data
 x = x.cuda()
 y = y.cuda()

 outputs=model(x)
 loss = loss_fn(outputs, y)

 test_running_loss += loss.item()
 #We apply softmax here to get the probabilities for each class
 probs = torch.nn.functional.softmax(outputs, dim=1)
 #We select the highest probability as our final predication
 pred = torch.argmax(probs, dim=1)
 test_acc += torch.sum(pred == y)

 #Average evaluation loss and evaluation accuracy for this epoch
 print(test_running_loss/len(testDataset), test_acc/len(testDataset))

Audio Files with Librosa
Code and audio for this article can be found here:
https://git.arts.ac.uk/ipavlov/WikiMisc/blob/main/AudioProcessing.ipynb
Documentaion for Librosa can be found here:
https://librosa.org/doc/main/index.html

Loading audio files
Librosa is a Python libray created for working with audio data. It's both easy to understand and has
an extensive feuture list.
By default Librosa supports all the popular audio file extensions, like WAV, OGG, MP3, and FLAC.

y — is a NumPy matrix that contains audio time series. If audio file is mono it will be one-
dimensional vector, if audio file is stereo it will be two-dimensional, and so on.
sr — is audio file's sampling rate.

Playing audio in Jupyter notebook
Using the code bellow you will be able to play audio inside of your notebook. The player is very
basic, but will be enough for simpler projects.

Vizualising audio files
To vizualise our audio files we can use Matplotlib.

import librosa
import librosa.display

filename = librosa.ex('trumpet') #Loads sample audio file
y, sr = librosa.load(filename)

from IPython.display import Audio

Audio(data=y, rate=sr)

import matplotlib.pyplot as plt

plt.figure(figsize=(12, 4))
librosa.display.waveshow(y, sr=sr) #This functions will dipslay audio file's waveform.

https://git.arts.ac.uk/ipavlov/WikiMisc/blob/main/AudioProcessing.ipynb
https://librosa.org/doc/main/index.html

Image not found or type unknown

You can use code bellow to vizualize audio file's spectrogram. Please refer to Librosa's
documantion for explanation for each function used in the code bellow:
https://librosa.org/doc/main/index.html

Image not found or type unknown

Working with multiple audio files
You can work multiple audio files. Just assign the time series for each file to a different variable or
create a list of audio time series.
The code bellow looks at all .wav files in a given folder.

Often times for AI&ML applications audio data needs to be of uniform length. To do this we can pad
them.

plt.show()

fig, ax = plt.subplots()

S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128,
 fmax=8000)

S_dB = librosa.power_to_db(S, ref=np.max)
img = librosa.display.specshow(S_dB, x_axis='time',
 y_axis='mel', sr=sr,
 fmax=8000, ax=ax)
fig.colorbar(img, ax=ax, format='%+2.0f dB')
ax.set(title='Mel-frequency spectrogram')

from glob import glob

audio_filepaths = []

for filename in glob('./audio/*.wav'):
 audio_filepaths += [filename]

audio_filepaths

https://librosa.org/doc/main/index.html

You can also append multiple audio files together. Let's do it with our padded files.

The waveform of a new audio will look like this:

Image not found or type unknown

Note: Keep track of audio file shapes, espcially along the 2nd axis.

Advanced Audio Analysis
Librosa has a wide range of tools for audio analyses. Some examples are included bellow.
Short-time Fourier transform:

padded_audio_files = []

max_allowed_length = 32000

for audio_filepath in audio_filepaths:

 y_voice, sr_voice = librosa.load(audio_filepath)

 if len(y_voice) > max_allowed_length:
 raise ValueError("data length cannot exceed padding length.")
 elif len(y_voice) < max_allowed_length:
 embedded_data = np.zeros(max_allowed_length)
 offset = max_allowed_length - len(y_voice)
 embedded_data[offset:offset+len(y_voice)] = y_voice
 elif len(y_voice) == max_allowed_length:
 embedded_data = y_voice

 padded_audio_files += [embedded_data]

padded_audio_files = np.array(padded_audio_files)

padded_audio_files.shape

long_number = padded_audio_files.flatten()
long_number.shape

S = np.abs(librosa.stft(y))

Decibel analysis:

Spectral flux:

Image not found or type unknown

 # Filters As with all Python libraries, to unlock the full potential of librosa they need to be

used with other libraries. The code bellow shows you how to apply a butter filter to audio signal,
with a help of SciPy. ```python scipy.signal.butter

S.shape

D = librosa.amplitude_to_db(librosa.stft(y), ref=np.max)

D.shape

#This code was taken from here: https://librosa.org/doc/main/generated/librosa.onset.onset_strength.html
S = np.abs(librosa.stft(y))
times = librosa.times_like(S)
fig, ax = plt.subplots(nrows=2, sharex=True)
librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max),
 y_axis='log', x_axis='time', ax=ax[0])
ax[0].set(title='Power spectrogram')
ax[0].label_outer()

onset_env = librosa.onset.onset_strength(y=y, sr=sr)
ax[1].plot(times, 2 + onset_env / onset_env.max(), alpha=0.8,
 label='Mean (mel)')

onset_env = librosa.onset.onset_strength(y=y, sr=sr,
 aggregate=np.median,
 fmax=8000, n_mels=256)
ax[1].plot(times, 1 + onset_env / onset_env.max(), alpha=0.8,
 label='Median (custom mel)')

C = np.abs(librosa.cqt(y=y, sr=sr))
onset_env = librosa.onset.onset_strength(sr=sr, S=librosa.amplitude_to_db(C, ref=np.max))
ax[1].plot(times, onset_env / onset_env.max(), alpha=0.8,
 label='Mean (CQT)')
ax[1].legend()
ax[1].set(ylabel='Normalized strength', yticks=[])

fig, ax = plt.subplots(nrows=2, figsize=(12, 4), constrained_layout=True)

ax[0].set(title='Normal waveform')

librosa.display.waveshow(y, sr=sr, ax=ax[0])

sos = signal.butter(17, 150, 'hp', fs=1000, output='sos') filtered = signal.sosfilt(sos, y)

ax[1].set(title='Filtered waveform')

librosa.display.waveshow(filtered, sr=sr, ax=ax[1])

filtered = filtered - 0.25 # Hearing protection

How to configure Weights & Biases for you ML
project
What is Weights & Biases?
Weights & Biases (wandb from now on) is a platform for AI/ML development. A set of tools it
provides can help you keep track of your model's training. This can be very useful if you want to
check on how's your model training since you can access wandb remotly from your phone or home
computer.

wandb set up
1. Create an account on wandb website.
2. Create a new project and set it's visibility.

Python_macImage not found or type unknown
Python_macImage not found or type unknown

3. Activate your Python enviroment.
4. Install wandb package from PyPi:

pip install wandb
5. Login into your wandb account from console:

wandb login Python_macImage not found or type unknown

How to use wandb in your AI/ML project
The simplest use case for wandb is to use it to track your training progress. You can monitor
training and validation loss values, test accuracy, and even see what data is being fed into your
model during training and validation.

You can do this in four simple steps:

1. Import wandb library
2. Initialize wandb process with your project name, you can specify details abouth the

training run, like batch size and learning rate.
3. Log the training information after every epoch.
4. Stop the process after training is finished.

You can refer to this block of code for step 2-4.

num_epochs = 25

if wandb and wandb.run is None:

https://wandb.ai/site

You can get the full code from:
https://git.arts.ac.uk/ipavlov/WikiMisc/blob/main/SimpleCNN_tweak.ipynb
Data can be found here

 experiment_dict = {}
 experiment_dict['batch_size']=batch_size
 experiment_dict["learning_rate"]=learning_reate
 experiment_dict["epochs"]=num_epochs

 wandb_run = wandb.init(config=experiment_dict, resume=False,
 project="Sample_WnB_project",
 name="Test Run")

#We will execute our training inside of a loop. Each iteration is a new epoch.
for epoch in range(num_epochs):
 print('Epoch:', epoch)

 total_train_loss, model, optimizer = train(model, optimizer, loss_fn, train_dataloader)

 train_loss = total_train_loss/len(train_dataloader)

 print('Train loss: ', train_loss) #average training loss for current epoch

 total_test_loss, total_test_acc = evaluate(model, test_dataloader, loss_fn)

 test_loss = total_test_loss/len(testDataset)
 test_acc = total_test_acc/len(testDataset)

 #Average evaluation loss and evaluation accuracy for this epoch
 print('Test loss: ', test_loss)
 print('Test accuracy: ', test_acc)

 wandb.log({"acc": test_acc, "train_loss": train_loss, "test_loss": test_loss})

wandb.finish()

https://git.arts.ac.uk/ipavlov/WikiMisc/blob/main/SimpleCNN_tweak.ipynb
https://wiki.cci.arts.ac.uk/books/how-to-guides/page/simple-pytorch-project

Dataset Augmentaion
This article will cover how you can increase the size of your original dataset with the help of data
augmentation. Data augmentaion is a practice of altering samples in your dataset, making them
distinct enough from the original sample to be considered a new sample, and keeping alterations
small enough to keep them recognizable as a part of the dataset's original data domain.
Examples: Adding slight noise to audio samples and mirroring images.

Image augmentaion
The simplest way to add data augmentaion to your training pipeline is to use Albumentations
library.

Starting from the most basic ones, here are some augmentaion tricks you can use:

Original image:
Image not found or type unknown

image = Image.open("testImg.jpg")
image_np = np.array(image)

Image flipping or mirroring:

https://albumentations.ai/docs/

Image not found or type unknown

transform = A.Compose([A.HorizontalFlip(p=1.0)])
transformed_image = transform(image=image_np)["image"]

Image not found or type unknown

transform = A.Compose([A.VerticalFlip(p=1.0)])
transformed_image = transform(image=image_np)["image"]

Image rotation:

Image not found or type unknown

transform = A.Compose([A.Rotate(p=1.0, limit=45, border_mode=0)])
transformed_image = transform(image=image_np)["image"]

HSV Jitter:

Image not found or type unknown

transform = A.Compose([A.ColorJitter(p=1.0)])
transformed_image = transform(image=image_np)["image"]

Gaussian Noise:

Image not found or type unknown

transform = A.Compose([A.GaussNoise(p=1.0, var_limit=(1000.0, 5000.0))])
transformed_image = transform(image=image_np)["image"]

Augmentaions almost always combined with each other:

Image not found or type unknown

Above is an extremecase of image augmentaion, we still want to keep the resulting images as
close to the original data distribution as possible:

 transform = A.Compose([
 A.HorizontalFlip(p=1.0),
 A.VerticalFlip(p=1.0),
 A.Rotate(p=1.0, limit=45, border_mode=0),
 A.RandomBrightnessContrast(p=1.0, brightness_limit=(0.15,0.25)),
 A.ColorJitter(p=1.0),
 A.GaussNoise(p=1.0, var_limit=(1000.0, 2000.0),),
])
 transformed_image = transform(image=image_np)["image"]

Image not found or type unknown

Further Reading
You can follow the links bellow for example use of Albumentaions library with popular AI/ML
libraries.

Tensorflow.
PyTorch.

 transform = A.Compose([
 A.HorizontalFlip(p=0.5),
 A.Rotate(p=0.5, limit=15, border_mode=0),
 A.RandomBrightnessContrast(p=0.5, brightness_limit=(-0.1,0.1)),
 A.ColorJitter(p=0.5),
 A.GaussNoise(p=0.5, var_limit=(50.0, 250.0),),
])
 transformed_image = transform(image=image_np)["image"]

https://albumentations.ai/docs/examples/tensorflow-example/
https://albumentations.ai/docs/examples/pytorch_classification/

