
A common way to run classes at the CCI is for your lecturer to manage homework through a main
git repository that they update with new files weekly, and ask you to make a fork of it to complete
the work. Once you have a fork of the repository set up properly, this can be a very efficient
workflow, but it takes a bit of getting used to!

In order to follow these instructions, make sure that you have first gone through the process of
creating a CCI Github account and setting it up locally.

Forked repositories are really useful as they allow the lecturer to update code in a single location
every week, which students can then integrate into their own work.

The key to using forks correctly is to make sure that you are pushing changes to your repository,
but pulling changes from their repository. (if you make edits online, you'll also need to pull from
your remote too, but it's best to try and manage everything locally if you can). The eventual aim of
what we're trying to achieve is illustrated by this diagram:

Forking a Git Repository

Overview: what are we doing

https://wiki.cci.arts.ac.uk/books/how-to-guides/page/setting-up-a-git-repository

We'll work through getting to this in the steps below, starting from making the cloud-based fork.

This step should be completed in your browser. Navigate to the repository you want to fork, e.g.
the one that your lecturer made, and click the 'fork' button. This will take you to a page that allows
you to name your copy -- you can either change this, or leave it the same, it won't affect the
function. If you have already made a fork, it will link you to your existing copy.

Step 1: make a fork of the remote repository

Once you have created the fork, it will take you to your copy of the repository. This should look the
same as the original, but this one belongs to you! Note that the name of the person who owns the
repository has changed, but it contains a link to the original repository underneath the main title.

https://wiki.cci.arts.ac.uk/uploads/images/gallery/2023-02/L9Sob05c6pVUu9E5-image-1677257224895-43-08.png
https://wiki.cci.arts.ac.uk/uploads/images/gallery/2023-02/u01QWevCke1Zv7N4-image-1677257232392-44-05.png

Next, you want to create a local copy of your fork. This is where you will edit the code to do your
homework. It's important that you clone your repo, not the original one! That's because your one is
the one you have permission to update and push to.

To make a local copy, navigate to the 'Code' tab and copy the 'SSH' version of the URL, not the
HTTPS!

Step 2: clone your fork locally

https://wiki.cci.arts.ac.uk/uploads/images/gallery/2023-02/6OGDznXNWOVdIyIl-image-1677258323123-04-58.png
https://wiki.cci.arts.ac.uk/uploads/images/gallery/2023-02/nYeIIYQSEQkLfqrO-image-1677257969239-59-15.png

Open your terminal (if you are using Windows, you should use Git Bash here rather than Command
Prompt), and navigate to the folder you want to create your repository in. Make sure you don't
clone the repository inside an existing git repo -- this will cause you problems. The best way to
check if you're in a git repo already is to type git status -- if it gives you an error like fatal! not a git
repository then you know it's safe to clone things there.

In this instance, I'm going to clone my repository to Desktop:

so, the commands are:

Now, you have a local copy of your code. You can add, commit and push to your fork of the
repository, and this will work just like a repository that you made. However, if your lecturer is
regularly publishing changes to your code, you will also want to link their repository as what's
called the upstream repository, so you can regularly pull and incorporate their changes.

cd where/you/want/repo
git clone git@git.arts.ac.uk:yourname/repo-name.git
cd repo-name

Step 3: add the original repository as an upstream
branch

https://wiki.cci.arts.ac.uk/uploads/images/gallery/2023-02/u5O1xi0OaUYoBe0L-image-1677258340790-05-11.png

In order to do this, we want to look at the state of the remotes. The remote branches point to
copies of the repository that exist online. You want the origin to be pointing to a repository that
you own, and to have the upstream point to your lecturer's repository.

The origin is what git thinks of as the 'default' -- so when you type in git push or git pull without
specifying a named repository, git will assume you mean that one.

To inspect your remote branches, type in the command git remote -v :

You should see 2 links, both to the origin repository. We want to keep these! We're going to add a
new one.

On git.arts.ac.uk, navigate to the original repository, the one that belongs to your lecturer. Like
before, copy the SSH url from the 'code' icon in the top right.

https://wiki.cci.arts.ac.uk/uploads/images/gallery/2023-02/5PsNpYTdmfjlTLm8-image-1677258725488-12-02.png

Navigate back to the same terminal window. Now type the following command (replacing the url).
This will add a new remote to your local repository, called 'upstream'. Make sure you use your
lecturer's repo here, not yours!:

Run git remote -v again, and you should see something like the following:

git remote add upstream git@git.arts.ac.uk:your-lecturer/your-lecturers-repo.git

https://wiki.cci.arts.ac.uk/uploads/images/gallery/2023-02/CnKcddCELsAZqwPj-image-1677258839214-13-50.png
https://wiki.cci.arts.ac.uk/uploads/images/gallery/2023-02/xqeTI2JnKz9ksiiV-image-1677259088023-18-01.png

At this point, we now have the setup shown in the diagram at the top of the page. When you want
to integrate changes made by your lecturer, run the command:

If this doesn't work, you might want to check that the main branch of your lecturer's git repository
is definitely called main -- some older versions of git use master . If that's the case, you would
write:

When working with git, it's always a good idea to commit and push your changes at the end of
each working session (and every time you add a new feature), and then pull changes before
starting to edit code when you are next working. This minimises the chances of conflicts and also
makes sure everything is up to date. Working with forked repos is no different. Depending on
whether you are also editing your online repo, or collaborating with anyone, you might want to
leave out the second 'git pull'.

As such, each session will look like:

git pull upstream main

git pull origin master

Bonus: general workflow advice

cd /path/to/repo
git status 			// see what's up, not always needed
git pull upstream main 		// pulls from your lecturer's repo
git pull			// pulls from your fork, not always needed

... edit your files, test things ...

git add .			// stages your changes for commit
git commit -m "message" 	// commits with a commit message
git push			// pushes your changes to your fork

Revision #11
Created 24 February 2023 16:13:14 by agnes cameron
Updated 29 April 2024 22:22:18 by Tom Lynch

