
These are instructions for doing this on a mac -- there are a few extra steps which might be a lot
less hassle to do on windows but I haven't tried. If you're a student reading this, chances are you
don't have an Atmel-ICE programmer to hand: if you're having Arduino trouble chat to one of us
first to make sure this is the right solution to your issue.

Mac permissions mean that using the AVR ISP you get some weird hassle and it won't work
properly in the IDE. You can get around this by rebuilding avrdude to make sure it includes a library
called HIDAPI. I followed the steps in this comment, which explains everything really well. I
reproduced the steps here for clarity as a few things had changed / there were a couple of external
instructions to follow.

round 1: HIDAPI setup

1. brew install autoconf automake
2. git clone git://github.com/libusb/hidapi.git
3. cd hidapi then ./bootstrap (this should run fine)
4. run to get the configuration for your OS ./configure
5. compile: make
6. install: sudo make install

round 2: avrdude rebuild (leave the hidapi folder to do this)

1. download latest version of avrdude: git clone git@github.com:avrdudes/avrdude.git
2. edit avrdude/src/configure.ac (NB: I'm not actually sure if you have to do this anymore you

could try it without. But I did do this and it didn't cause any issues, so). You want to
change this:

to this:

How to revive a broken Arduino using a
Mac

Get the right configuration of avrdude

AH_TEMPLATE([HAVE_LIBHIDAPI],
 [Define if HID support is enabled via libhidapi])
AC_SEARCH_LIBS([hid_init], [hidapi hidapi-libusb hidapi-hidraw], [have_libhidapi=yes])

AH_TEMPLATE([HAVE_LIBHIDAPI],
 [Define if HID support is enabled via libhidapi])

https://savannah.nongnu.org/bugs/?60575#comment1

3. run ./build.sh , and check that when it prints the Configuration Summary it managed to
successfully find libhidapi (should look like this):

4. final bit: run sudo cmake --build build_darwin --target install to install. Check the install locations
it prints -- you care about where the main and the conf files are for later in the process:

Once you're at this step you're in a good place to use avrdude directly from the command line.

afaik you don't actually need to do things to the fuses like the Arduino bootloader instructions
suggest (and I have a horrible feeling that the 2 that ended up not working were the ones where I
messed with the fuse settings). Instead, I just used the ATMEL-ICE tool to burn the hex file directly
to the Arduino.

This is something of a shame as I did find this amazing AVR fuse calculator website and I wanted an
excuse to show it to someone.

for _hidapi_lib in hidapi hidapi-hidraw hidapi-libusb; do
 PKG_CHECK_MODULES([hidapi],[$_hidapi_lib],[have_libhidapi=yes],[true])
done
AC_SEARCH_LIBS([hid_init], [hidapi hidapi-libusb hidapi-hidraw], [have_libhidapi=yes])

-- Configuration summary:
-- ----------------------
-- DON'T HAVE libelf
-- DO HAVE libusb
-- DO HAVE libusb_1_0
-- DO HAVE libhidapi
...
-- ----------------------

-- Install configuration: "RelWithDebInfo"
-- Installing: /usr/local/bin/avrdude <- important
-- Installing: /usr/local/lib/libavrdude.a
-- Installing: /usr/local/include/libavrdude.h
-- Installing: /usr/local/etc/avrdude.conf <- important
-- Installing: /usr/local/share/man/man1/avrdude.1

Using avrdude to burn new bootloader to the arduino

Hardware setup

https://docs.arduino.cc/hacking/software/Bootloader#burning-the-bootloader
https://eleccelerator.com/fusecalc/fusecalc.php?chip=atmega32u4&LOW=5F&HIGH=91&EXTENDED=F3&LOCKBIT=2F

The Arduino needs to be externally powered (I used a USB wall supply to avoid confusing my
computer) and the ISP header inserted the correct way round into the Arduino. The below image is
for an Uno but it's still correct -- the little bump on the SCK pin faces toward the centre of the
board.

Lastly, connect the ATMEL-ICE to the computer (I used USB-C to micro-USB)

The Arduino IDE has a bunch of bootloaders saved locally, in the folder
/Applications/Arduino.app/Contents/Java/hardware/arduino/avr/bootloaders/ . You can also browse them online
in the Arduino Core AVR repository. For Leonardo, we want to use the Caterina-Leonardo
bootloader.

The command that I ran was:

/usr/local/bin/avrdude -C /usr/local/etc/avrdude.conf -v -p atmega32u4 -c atmelice_isp -P usb -U
flash:w:/Applications/Arduino.app/Contents/Java/hardware/arduino/avr/bootloaders/caterina/Caterina-Leonardo.hex:i

NB -- I'm pointing to the avrdude and conf files that are the specific ones that were installed in the
previous step. By default your system installation of avrdude is probably not this one (but you can
type which avrdude to check/reset). Note also that this configuration is for the Arduino Leonardo,
using the Atmel ICE ISP. For an Uno, for example, you'd want -p atmega328p and to find what the
current Uno bootloader is.

If you get the error:

Finding and burning the bootloader

avrdude stk500v2_command() error: command failed
avrdude main() error: initialization failed, rc=-1

https://wiki.cci.arts.ac.uk/uploads/images/gallery/2022-12/0av8LSgDqPbZHGVx-image-1671550652257.png
https://github.com/arduino/ArduinoCore-avr/tree/master/bootloaders

it's worth trying appending -B 200kHz -F to the avrdude like they suggest to remedy it, but if then
you get the error:

I think ur arduino is borked beyond repair. RIP dude.

avrdude: device signature = 0x000000
avrdude main() error: Yikes! Invalid device signature.

Revision #4
Created 20 December 2022 15:05:51 by agnes cameron
Updated 29 April 2024 22:24:58 by Tom Lynch

