
This is the written version of an embroidery workshop in the CCI, and can either accompany the
live workshop or be worked through by itself. As we go through the exercises, it's a good idea to
have the PEmbroider Cheat Sheet open in a tab for reference. These notes are also heavily adapted
from the cheat sheet. This workshop is based on Carpentries format, which means that participants
should code alongside whoever is running it.

Copies of the files used for each of the exercises that can be downloaded here, but I'd recommend
trying to generate the files yourself where possible.

Follow the instructions here to set up PEmbroider on your computer. You will need Processing 4.
The first thing we will do in PEMbroider is draw a single line, which we can also use to test
everything is working correctly.

All files in PEmbroider have a similar structure, and the cheat sheet helpfully provides a template,
which I've adapted slightly to match the file format we use in the CCI. We'll be using this as the
basis for all the files in the workshop. This file draws a single line, but we can change that to
anything we like.

Workshop: Generative Embroidery with
PEmbroider

1. Hello World: Drawing a Line

Template File

// Example PEmbroider program
import processing.embroider.*;
PEmbroiderGraphics E;

void setup() {

  // Starting up:
  noLoop();
  size(600, 600); // 100 is 1cm
  E = new PEmbroiderGraphics(this, width, height);
  
  // change this line you want a different file type
  String outputFilePath = sketchPath("filename.pes"); 

https://github.com/CreativeInquiry/PEmbroider/blob/master/PEmbroider_Cheat_Sheet.md
https://carpentries.org/
https://github.com/agnescameron/pembroider-workshop
https://github.com/CreativeInquiry/PEmbroider#getting-started-with-pembroider-in-processing
https://github.com/CreativeInquiry/PEmbroider/blob/master/PEmbroider_Cheat_Sheet.md


In order, this file:

sets up a new canvas, of size 600x600 pixels
tells the computer that it's an embroidery canvas, and sets an output file path
draws a line on the canvas
shows it to us (visualize) -- the true, true, false  part tells the computer whether to draw
colours, stitches and the routes taken by the machine. I prefer these settings but they can
all be helpful

There are some other lines that are 'commented out' (have slashes in front of them) and don't run.
These we might use later but for now we don't need to use them.

When you run this file, you should see an output that looks like this (if you don't see this, you will
want to check over the setup steps again):

  E.setPath(outputFilePath); 
  E.beginDraw();
  E.clear();

  //-------
  // Content goes here:
  E.line(0, 0, 600, 600); 

  //----------  
  // Visualization and export:
  // NOTE: Leave optimize() and endDraw() commented out,
  // until you are ready to export the embroidery file! 
  // Don't forget to un-comment them when you want to export!
  //
  // E.optimize(); // VERY SLOW, but essential for file output! 
  E.visualize(true, true, false);   // Display the embroidery path on-screen.
  // E.endDraw();  // Actually writes out the embroidery file.
}



The pink dots represent the ends of stitches, where the needle enters the fabric. Shortly we will
experiment with different stitch types and lengths, but for now we are using the default settings.

The first thing we will look at is the structure of the canvas. If you like, you can also try
'commenting out' the content line, to just see a plain canvas.

Can you make the canvas larger?
Can you make the canvas rectangular rather than square?

Exercise 1.1

https://wiki.cci.arts.ac.uk/uploads/images/gallery/2022-08/oNeiDiDCFCcp0wjG-image-1660208322307-58-38.png


The PEmbroider code for drawing a line is:

This means that (x1, y1) is the coordinates of the point where the line starts, and (x2, y2) is the
point where the line ends. The E.line()  part means "use the line function that belongs to
PEmbroider, which is represented in our code by the letter E". We call this a 'method' In our code,
we get a diagonal line because we draw from the point (0, 0) to the point (600, 600) (the edge of
the canvas).

Can you make the line draw only halfway across the original canvas?
Are you able to draw a vertical line? What about drawing 2 lines?

You might find these notes on coordinate grids in Processing helpful here!

From now on, unless we're changing more of the file, I'm going to list just the 'content' code that
we're changing, using ...  to represent the rest of the file. In our last exercise, the content was a
single line -- the E.line()  method -- but it can be more -- the important part is that it goes in the
same place in the file each time.

Try changing out the line for a circle:

You should see a slightly off-center circle. In the documentation, the E.circle()  method is listed as:

What do you think r  represents in this method?
Can you place the circle in the center of the canvas? What about a circle that fills the
whole canvas?
The PEmbroider method for drawing a rectangle is E.rect(x, y, w, h); . Can you replace the
circle-drawing line with a line that draws a rectangle instead? What do you think w  and h
represent?

Drawing lines

E.line(x1, y1, x2, y2);

Exercise 1.2

2. Playing with shapes

...
E.circle(200, 200, 200);
...

E.circle(x, y, r);

Exercise 2.1

https://py.processing.org/tutorials/drawing/


PEmbroider also allows us to merge outlines to make composite shapes. This can quickly allow us
to create more complex drawings. In this example, we merge together 2 circles:

Experiment with changing the size and the position of the circles. What happens when you
make one of the circles very large?
Try adding a third circle. Can you make a clover shape? What about a snowman?
What happens when you move the line E.composite.circle(420, 250, 200);  to after the line
E.endComposite(); ? Why do you think that happened?
Can you make a composite from a rectangle and a circle? Do you need to add anything to
the original rectangle-drawing method?
The PEmbroider method for drawing a triangle is E.triangle(x1, y1, x2, y2, x3, y3); . Can you
make a composite shape from a triangle and a circle?
Can you draw 2 separate composite shapes on the same canvas?

Composite Shapes

...
E.beginComposite();
  E.composite.circle(320, 250, 200);
  E.composite.circle(420, 250, 200);
E.endComposite();
...

Exercise 2.2



here's one I made earlier:

Up until now, all the shapes we've been drawing have been outlines. PEmbroider supports several
kinds of fills, which we will experiment with now. The way settings work in PEmbroider (and in
Processing!) is that you set a bunch of settings, then draw the thing you want the settings to apply
to, and then if you want to draw something with different settings, you change the settings and
then draw the thing. For example, the order you'd do things if you wanted to draw a red square
and a blue square would be:

3. Fills and Hatching

https://wiki.cci.arts.ac.uk/uploads/images/gallery/2022-08/B1zLemlZt1Dddj9O-image-1660213006241-16-43.png


In our case, what this means is that if we add some code that adjusts the fill settings, this needs to
go before the part where we draw our shape. Let's try drawing a filled circle:

There are 6 different fill types in total in PEmbroider. These can each be set using the following
lines of code:

Instead of drawing a circle, try and fill one of the shapes you made in the last exercise
One at a time, try out the different fill types on your shape. Which is your favourite?

As well as being able to change the type of fill, it's also possible to change the fill settings, namely
the spacing of the fill lines, the colour of the fill, and the angle of the fill lines (for satin and parallel
fills, where the lines have a prevailing angle).

We can do this using the same principles as before (e.g. putting the settings before the thing we
want them to apply to). The methods to adjust the settings are listed below (note that we always
need to specify a fill colour, even if it's just black):

> set fill to red
> draw square
> set fill to blue
> draw square

...
E.hatchMode(E.PARALLEL);
E.fill(0,0,0);
E.circle(300, 300, 200);
...

Fill Types

    E.hatchMode(E.CONCENTRIC);
    E.hatchMode(E.PARALLEL);
    E.hatchMode(E.SATIN);
    E.hatchMode(E.SPIRAL); 
    E.hatchMode(E.PERLIN);
    E.hatchMode(E.CROSS);

Exercise 3.1

Fill Settings

E.hatchSpacing(spacing); // sets the density of adjacent runs (in machine units)
E.hatchAngleDeg(angle);  // sets the orientation for SATIN & PARALLEL (in degrees)



Try making one shape with a diagonal hatch fill, and another with a vertical fill. What
happens when you place them on top of each other?
What happens when you adjust spacing on concentric mode? What about Perlin mode?
To un-set fill settings, you can use the line E.noFill() . Can you use this line to make some
code that draws a filled shape, and then draws an outline shape afterward?

Another really important line is the setStitch()  property. This sets the length of the stitch. Unlike
hatch spacing, setStitch takes 3 arguments:

minLength: the shortest the stitch can possibly be
desiredLength: what length most stitches should be
noise: how much this should vary (e.g. should the stitches be very even). The noise
property changes the texture of fills significantly.

experiment with modifying the stitch lengths in your fills

The final group of settings we're going to look at is modifying the stroke (line) style. Similarly to
fills, you need to modify the settings before drawing your line.

There are 2 stroke types in PEmbroider; tangent is the one we've been using by default, but
perpendicular can be used to get a thicker, more defined outline.

As before, stroke color can be set using RGB values. The other settings are the thickness of the line
(stroke weight) and the stroke spacing (e.g. for perpendicular strokes).

E.fill(R, G, B);         // sets your thread color (numbers between 0-255)

Exercise 3.2

E.setStitch(minLength, desiredLength, noise);

Exercise 3.3

4. Stroke and Stitch Settings

E.strokeMode(E.PERPENDICULAR);  // Stitches are perpendicular to the stroke
E.strokeMode(E.TANGENT);         // Stitches go in the same direction as stroke

E.stroke(R, G, B);         // sets the stroke color, just like Processing.
E.strokeWeight(width);     // sets the thickness of the stroke (in machine units)
E.strokeSpacing(spacing);  // sets the density of the hatching within the stroke

Exercise 4.1



create a file with 4 different lines, each with different stroke settings. How much variation
can you get?

Now we have a good idea of what you can do with PEmbroider's API, we can try out some
generative code.

For loops are structures that allow the same piece of code to be repeated multiple times with
different inputs. We will have a go with them here, but for a full tutorial it's worth going through
this page on for loops in Processing.

We're going to try out a for loop that repeatedly draws lines on the canvas, changing the position
of the line each time it draws.

In this code, we create a number, i , that will go from 1 to 10, increasing every time. The first time
the code runs, i  is equal to 1, and so i*50=50 . The next time, i=2 , so i*50=100 , and so on, up till
i  reaches 9. i  cannot reach 10 (as the code will only run for i<10) and so the for loop ends.

What happens when the number multiplying i  is different for y1  and y2 ?
Can you make a series of vertical lines instead of horizontal lines by changing where i  is
used?
Can you draw a grid?
What happens when you increase and decrease the number of repeats (e.g. the number
10 in the example)
Experiment with using i  in different positions. What happens when you add or subtract it
(or multiples of it)? Can you make a radial pattern?

Another very useful tool for making generative patterns is randomness. Unlike the code we were
using before (which used scaled variations where we could predict what the outcome would be),
randomness adds an element of chance. In Processing, the function random(50)  will return a
random number between 0-50. This number will be a decimal (float) rather than a whole number
(int), so if we want to use it like a whole number we also need to use the int()  method.

5. Loops and Randomness

For loops

...
for (int i = 1; i < 10; i++) {
	E.line(50, i*50, 550, i*50);
}
...

Exercise 5.1

Random numbers

https://happycoding.io/tutorials/processing/for-loops


Run this code a few times. What do you notice? What is being randomly varied?
What happens when you add a number to the random number? What if you multiply it by
something?
Can you make the randomness affect the y position?

The last thing we will look at is using 2 nested for loops to create 2D designs. This isn't the only
way to achieve this -- remember the grids from exercise 5.1 -- but this will help us a lot.

Before we get there, we could also look at what happens when we nest for loops inside other things
, in this case, the composite shapes code from before.

By putting the for loop inside E.beginComposite();  and E.endComposite(); , it's the same (from the point
of view of the computer) as writing 10 separate composite circle lines, but for us it's a whole lot
quicker.

and look! A beautiful worm:

...
for (int i = 1; i < 10; i++) {
	E.circle(50 + i*50, 100, int(random(50)));
}
...

Exercise 5.2

Nesting for loops

...
  E.beginComposite();
  for (int i = 1; i < 10; i++) {
    E.composite.circle(50 + i*50, 100, 50 + int(random(50)));
  }
  E.endComposite(); 
...



We can use the same principle to put one for loop inside another:

Now we get a whole grid of circles!

  for (int i = 1; i < 10; i++) {
  	for (int j = 1; j < 10; j++) {
    E.circle(i*50, j*50, 50 + int(random(50)));
    }
  }

https://wiki.cci.arts.ac.uk/uploads/images/gallery/2022-08/9BYuJanjgl31Njzx-image-1660229200690-46-37.png


You can also use random(-60, 60)  to generate a number that can be positive or negative.
Try using this in one of the position values.
Have a go at making these circles into a composite shape. What happens when you
change the numbers that are multiplied and added? Have a go at playing with these till
you get an image that you like.
Can you do this with a different shape? What about triangles?

Here's one I made earlier:

Exercise 5.3

6. Polylines and curves

https://wiki.cci.arts.ac.uk/uploads/images/gallery/2022-08/EFBLrrMZUYEnEysD-image-1660230369677-06-05.png


As well as having preset shapes, PEmbroider (like Processing) supports making custom shapes by
defining a set of points along a line. To start one of these shapes, you need to bookend the line
with:

If the final co-ordinate matches the first co-ordinate, we can also fill the shape: if not, it's just a
stroke. Polylines are also great as within the line the machine doesn't need to make a jump; this is
helpful for avoiding too many floats later on.

Each point on the line is given by E.vertex(x, y) , a single point in space. To draw a spiky shape, we
can draw a bunch of points:

Have a go at making a shape of your own: can you make a 5-pointed star? Can you add a
fill?

There are a number of different ways to render curves in Processing, which inherit from the
different curve-drawing techniques in computer graphics. These are: arcs, splines and Bézier
curves. The Processing curves tutorial has a good summary of this:

Use arc()  when you need a segment of a circle or an ellipse. You can't make continuous
arcs or use them as part of a shape.
Use curve()  (the spline function) when you need a small curve between two points. Use
curveVertex()  to make a continuous series of curves as part of a shape.
Use bezier()  when you need long, smooth curves. Use bezierVertex()  to make a continuous
series of Bézier curves as part of a shape.

The tutorial gives a great overview of the different types and I'd recommend experimenting with all
of them.

E.beginShape();
	// ...points
E.endShape();

E.beginShape();
	E.vertex(10,10);
	E.vertex(500,50);
	E.vertex(450,250);
	E.vertex(350,140);
	E.vertex(200,300);
	E.vertex(10,10);
E.endShape();

Exercise 6.1

Curves

https://processing.org/tutorials/curves
https://processing.org/tutorials/curves


Processing allows data to be loaded in CSV and JSON formats. For this exercise, we're going to use
NASA's Land Ocean Surface Temperature dataset, which gives the mean global temperature since
1880 till present-day. To do this task, I have created a folder called datasets  within the processing
sketch folder, and created a file inside that called temp.csv .

First, make an empty sketch and try to read in the data from the .csv file:

You should see the data from the csv printed to the terminal.

The for loop that starts for (TableRow row : table.rows())  is where we're going to use our values. First,
we can try a simple example of drawing circles for each entry in the table, with the radius
proportional to the temperature. As some temperature values are negative, we will need to adjust
these up.

We want to add the embroidery template setup before the table is created (and also E.optimize() )
after! To draw our circle, we can add directly to the for loop:

7. Generating embroidery from data

Table table;

void setup() {
  
  table = loadTable("datasets/temp.csv", "header");
  println(table.getRowCount() + " total rows in table");

  for (TableRow row : table.rows()) {
    
    int year = row.getInt("year");
    float temp = row.getFloat("unsmoothed");
    println("year " + year + " temp " + temp);
  }
}

...
  for (TableRow row : table.rows()) {
    
    int year = row.getInt("year");
    float temp = row.getFloat("unsmoothed");
    float radius = (temp + 1.0)*45;
    E.circle(100, 100, radius);
  }

https://data.giss.nasa.gov/gistemp/graphs/graph_data/Global_Mean_Estimates_based_on_Land_and_Ocean_Data/graph.txt


This code will create all the circles drawn in the same place. Ideally we'd like to space them out!
We can do this by adding a counter:

An issue we have here is that the data comes as one long list, which makes it hard to generate a
tractable embroidery file. There are a number of ways around this, one of which is to use the
modulo operator. This gives you the remainder when a number is divided by another number. This
means, we can define a row length and count along our dataset in rows.

...

...
  int counter = 0;

  for (TableRow row : table.rows()) {
    
    int year = row.getInt("year");
    float temp = row.getFloat("unsmoothed");
    float radius = (temp + 1.0)*45;
    E.circle(100, counter*20, radius);
    counter = counter + 1;
  }

...

7.1 Creating a grid from linear data

  ...
  int counter=0;
  int rowLength = 13;
  int spacing = round(900/(rowLength));
  
  for (TableRow row : table.rows()) {
    int i = counter % rowLength;
    int j = floor(num/rowLength);
    
    int year = row.getInt("year");
    float temp = row.getFloat("unsmoothed");
    float radius = (temp + 1.0)*45;
    
    E.circle((i+1)*spacing, (j+1)*spacing, radius);



We've scratched the surface of PEmbroider's full capabilities, which include things like image
imports, interpolation, clipping and more.

To save the file as an embroidery file, you need to

I personally find PEmbroider's presets a bit dense, and think they make for quite tough-feeling
embroidery. My main recommendation is to make a sample sheet where you experiment with
different fill densities, stitch lengths and stroke widths till you find some you like, but failing that,
my defaults are:

If you want to use these throughout, just stick this above the 'content' section of your file.

Have a go at using randomness to control the fill, colour, and spacing properties of
different shapes.
Take a look at the shape_culling  example in the PEmbroider examples folder. Have a go at
using your favourite of the culling options on different overlapping shapes. Can you add
composite shapes to their code? How do they compare?
Take a look at the hatchangle_auto  demo. What lines are they using to follow the mouse?
Could you use those numbers to generate other things?

    counter=counter+1;
  }
  ...

8. Tips, notes, further reading and extension exercises

8.1 Saving files + naming

  String outputFilePath = sketchPath("triangles" + str(int(random(0, 100))) + ".pes"); 

8.2 Scale, density and stitch sizing

    E.strokeSpacing(2.0)    // this spaces the stroke (outline) stitches by 2 pixels
    E.hatchSpacing(3.0);    // this spaces hatch (fill) stitches by 3 pixels
    E.setStitch(5, 30, 0.0) // this sets minimum stitch to be 5px

Extension exercises

Revision #10
Created 11 August 2022 08:37:51 by agnes cameron
Updated 15 January 2025 16:29:30 by agnes cameron

https://github.com/CreativeInquiry/PEmbroider/blob/master/API.md

